Quantum Superalgebra Representations on Cohomology Groups of Non-commutative Bundles
نویسنده
چکیده
Quantum homogeneous supervector bundles arising from the quantum general linear supergoup are studied. The space of holomorphic sections is promoted to a left exact covariant functor from a category of modules over a quantum parabolic sub-supergroup to the category of locally finite modules of the quantum general linear supergroup. The right derived functors of this functor provides a form of Dolbeault cohomology for quantum homogeneous supervector bundles. We explicitly compute the cohomology groups, which are given in terms of well understood modules over the quantized universal enveloping algebra of the general linear superalgebra.
منابع مشابه
Cohomology Groups of Deformations of Line Bundles on Complex Tori
The cohomology groups of line bundles over complex tori (or abelian varieties) are classically studied invariants of these spaces. In this article, we compute the cohomology groups of line bundles over various holomorphic, non-commutative deformations of complex tori. Our analysis interpolates between two extreme cases. The first case is a calculation of the space of (cohomological) theta funct...
متن کاملDerivations of the Algebra of Sections of Superalgebra Bundles
In this paper we review the concepts of the superalgebra, superderivation and some properties of them. We will define algebraic and differential superderivations on a superalgebra and will prove some theorems about them, Then we consider a superalgebra bundle, that is an algebra bundle which its fibers are superalgebras and then characterize the superderivations of the algebra of sections of th...
متن کاملPartition complexes , duality and integral tree representations
We show that the poset of non-trivial partitions of {1, 2, . . . , n} has a fundamental homology class with coefficients in a Lie superalgebra. Homological duality then rapidly yields a range of known results concerning the integral representations of the symmetric groups Σn and Σn+1 on the homology and cohomology of this partially-ordered set. AMS Classification 05E25; 17B60, 55P91
متن کاملTopological Field Theory and Quantum Holonomy Representations of Motion Groups
Canonical quantization of abelian BF -type topological field theory coupled to extended sources on generic d-dimensional manifolds and with curved line bundles is studied. Sheaf cohomology is used to construct the appropriate topological extension of the action and the topological flux quantization conditions, in terms of the Čech cohomology of the underlying spatial manifold, as required for t...
متن کاملThe Gelfand-kirillov Dimensions of Algebras Arising from Representation Theory
This note is to study a variety of graded algebras that arise from the induced representations for semisimple algebraic groups and quantum groups. These algebras will play an important role in a study of the cohomology groups of line bundles over the flag varieties. This short note concentrates on the calculation of the Gelfand-Kirillov dimensions of these algebras.
متن کامل